CREATE TABLE — define a new table
CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ]table_name
( [ {column_name
data_type
[ COLLATEcollation
] [column_constraint
[ ... ] ] |table_constraint
| LIKEsource_table
[like_option
... ] } [, ... ] ] ) [ INHERITS (parent_table
[, ... ] ) ] [ PARTITION BY { RANGE | LIST | HASH } ( {column_name
| (expression
) } [ COLLATEcollation
] [opclass
] [, ... ] ) ] [ USINGmethod
] [ WITH (storage_parameter
[=value
] [, ... ] ) | WITHOUT OIDS ] [ WITH UPDATE CURRENT_TIMESTAMP ] [ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ] [ TABLESPACEtablespace_name
] [ PARTITION BY partition_type (column) [ SUBPARTITION BY partition_type (column) ] [ SUBPARTITION TEMPLATE ( template_spec ) ] [...] ( partition_spec ) | [ SUBPARTITION BY partition_type (column) ] [...] ( partition_spec [ ( subpartition_spec [(...)] ) ] ) ] [ WITH PRIMRAY KEY [ smallserial | serial | bigserial ] ] CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ]table_name
OFtype_name
[ ( {column_name
[ WITH OPTIONS ] [column_constraint
[ ... ] ] |table_constraint
} [, ... ] ) ] [ PARTITION BY { RANGE | LIST | HASH } ( {column_name
| (expression
) } [ COLLATEcollation
] [opclass
] [, ... ] ) ] [ USINGmethod
] [ WITH (storage_parameter
[=value
] [, ... ] ) | WITHOUT OIDS ] [ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ] [ PARTITION BY partition_type (column) [ SUBPARTITION BY partition_type (column) ] [ SUBPARTITION TEMPLATE ( template_spec ) ] [...] ( partition_spec ) | [ SUBPARTITION BY partition_type (column) ] [...] ( partition_spec [ ( subpartition_spec [(...)] ) ] ) ] [ TABLESPACEtablespace_name
] CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ]table_name
PARTITION OFparent_table
[ ( {column_name
[ WITH OPTIONS ] [column_constraint
[ ... ] ] |table_constraint
} [, ... ] ) ] { FOR VALUESpartition_bound_spec
| DEFAULT } [ PARTITION BY { RANGE | LIST | HASH } ( {column_name
| (expression
) } [ COLLATEcollation
] [opclass
] [, ... ] ) ] [ USINGmethod
] [ WITH (storage_parameter
[=value
] [, ... ] ) | WITHOUT OIDS ] [ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ] [ TABLESPACEtablespace_name
] wherecolumn_constraint
is: [ CONSTRAINTconstraint_name
] { NOT NULL | NULL | CHECK (expression
) [ NO INHERIT ] | DEFAULTdefault_expr
| ON UPDATE CURRENT_TIMESTAMP | AUTO_INCREMENT | GENERATED ALWAYS AS (generation_expr
) STORED | GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ (sequence_options
) ] | UNIQUEindex_parameters
| PRIMARY KEYindex_parameters
| REFERENCESreftable
[ (refcolumn
) ] [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ] [ ON DELETEreferential_action
] [ ON UPDATEreferential_action
] } [ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] andtable_constraint
is: [ CONSTRAINTconstraint_name
] { CHECK (expression
) [ NO INHERIT ] | UNIQUE (column_name
[, ... ] )index_parameters
| PRIMARY KEY (column_name
[, ... ] )index_parameters
| EXCLUDE [ USINGindex_method
] (exclude_element
WITHoperator
[, ... ] )index_parameters
[ WHERE (predicate
) ] | FOREIGN KEY (column_name
[, ... ] ) REFERENCESreftable
[ (refcolumn
[, ... ] ) ] [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ] [ ON DELETEreferential_action
] [ ON UPDATEreferential_action
] } [ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ] andlike_option
is: { INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY | INDEXES | STATISTICS | STORAGE | SEQUENCES | ALL } andpartition_bound_spec
is: IN (partition_bound_expr
[, ...] ) | FROM ( {partition_bound_expr
| MINVALUE | MAXVALUE } [, ...] ) TO ( {partition_bound_expr
| MINVALUE | MAXVALUE } [, ...] ) | WITH ( MODULUSnumeric_literal
, REMAINDERnumeric_literal
)index_parameters
inUNIQUE
,PRIMARY KEY
, andEXCLUDE
constraints are: [ INCLUDE (column_name
[, ... ] ) ] [ WITH (storage_parameter
[=value
] [, ... ] ) ] [ USING INDEX TABLESPACEtablespace_name
]exclude_element
in anEXCLUDE
constraint is: {column_name
| (expression
) } [opclass
] [ ASC | DESC ] [ NULLS { FIRST | LAST } ] where partition_type is: LIST | RANGE | HASH where partition_spec is: partition_element [, ...] and partition_element is: DEFAULT PARTITION name | [PARTITION name] VALUES (list_value [,...] ) | [PARTITION name] START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE] [ END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE] ] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [PARTITION name] END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [PARTITION name] FROM ([datatype] 'from_value') [INCLUSIVE | EXCLUSIVE] [ TO ([datatype] 'to_value') [INCLUSIVE | EXCLUSIVE] ] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [PARTITION name] TO ([datatype] 'to_value') [INCLUSIVE | EXCLUSIVE] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [PARTITION name] VALUES WITH (MODULUS numeric_literal, REMAINDER numeric_literal) [ TABLESPACE tablespace ] where subpartition_spec or template_spec is: subpartition_element [, ...] and subpartition_element is: DEFAULT SUBPARTITION name | [SUBPARTITION name] VALUES (list_value [,...] ) | [SUBPARTITION name] START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE] [ END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE] ] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [SUBPARTITION name] END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [SUBPARTITION name] FROM ([datatype] 'from_value') [INCLUSIVE | EXCLUSIVE] [ TO ([datatype] 'to_value') [INCLUSIVE | EXCLUSIVE] ] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [SUBPARTITION name] TO ([datatype] 'to_value') [INCLUSIVE | EXCLUSIVE] [ EVERY ([datatype] [number | INTERVAL] 'interval_value') ] | [SUBPARTITION name] VALUES WITH (MODULUS numeric_literal, REMAINDER numeric_literal)
CREATE TABLE
will create a new, initially empty table
in the current database. The table will be owned by the user issuing the
command.
If a schema name is given (for example, CREATE TABLE
myschema.mytable ...
) then the table is created in the specified
schema. Otherwise it is created in the current schema. Temporary
tables exist in a special schema, so a schema name cannot be given
when creating a temporary table. The name of the table must be
distinct from the name of any other table, sequence, index, view,
or foreign table in the same schema.
CREATE TABLE
also automatically creates a data
type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same
name as any existing data type in the same schema.
The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid values in the table in various ways.
There are two ways to define constraints: table constraints and column constraints. A column constraint is defined as part of a column definition. A table constraint definition is not tied to a particular column, and it can encompass more than one column. Every column constraint can also be written as a table constraint; a column constraint is only a notational convenience for use when the constraint only affects one column.
To be able to create a table, you must have USAGE
privilege on all column types or the type in the OF
clause, respectively.
TEMPORARY
or TEMP
If specified, the table is created as a temporary table.
Temporary tables are automatically dropped at the end of a
session, or optionally at the end of the current transaction
(see ON COMMIT
below). Existing permanent
tables with the same name are not visible to the current session
while the temporary table exists, unless they are referenced
with schema-qualified names. Any indexes created on a temporary
table are automatically temporary as well.
The autovacuum daemon cannot
access and therefore cannot vacuum or analyze temporary tables.
For this reason, appropriate vacuum and analyze operations should be
performed via session SQL commands. For example, if a temporary
table is going to be used in complex queries, it is wise to run
ANALYZE
on the temporary table after it is populated.
Optionally, GLOBAL
or LOCAL
can be written before TEMPORARY
or TEMP
.
This presently makes no difference in LightDB
and is deprecated; see
Compatibility below.
UNLOGGED
If specified, the table is created as an unlogged table. Data written to unlogged tables is not written to the write-ahead log (see Chapter 27), which makes them considerably faster than ordinary tables. However, they are not crash-safe: an unlogged table is automatically truncated after a crash or unclean shutdown. The contents of an unlogged table are also not replicated to standby servers. Any indexes created on an unlogged table are automatically unlogged as well.
IF NOT EXISTS
Do not throw an error if a relation with the same name already exists. A notice is issued in this case. Note that there is no guarantee that the existing relation is anything like the one that would have been created.
table_name
The name (optionally schema-qualified) of the table to be created.
OF type_name
Creates a typed table, which takes its
structure from the specified composite type (name optionally
schema-qualified). A typed table is tied to its type; for
example the table will be dropped if the type is dropped
(with DROP TYPE ... CASCADE
).
When a typed table is created, then the data types of the
columns are determined by the underlying composite type and are
not specified by the CREATE TABLE
command.
But the CREATE TABLE
command can add defaults
and constraints to the table and can specify storage parameters.
column_name
The name of a column to be created in the new table.
data_type
The data type of the column. This can include array specifiers. For more information on the data types supported by LightDB, refer to Chapter 8.
COLLATE collation
The COLLATE
clause assigns a collation to
the column (which must be of a collatable data type).
If not specified, the column data type's default collation is used.
INHERITS ( parent_table
[, ... ] )
The optional INHERITS
clause specifies a list of
tables from which the new table automatically inherits all
columns. Parent tables can be plain tables or foreign tables.
Use of INHERITS
creates a persistent relationship
between the new child table and its parent table(s). Schema
modifications to the parent(s) normally propagate to children
as well, and by default the data of the child table is included in
scans of the parent(s).
If the same column name exists in more than one parent table, an error is reported unless the data types of the columns match in each of the parent tables. If there is no conflict, then the duplicate columns are merged to form a single column in the new table. If the column name list of the new table contains a column name that is also inherited, the data type must likewise match the inherited column(s), and the column definitions are merged into one. If the new table explicitly specifies a default value for the column, this default overrides any defaults from inherited declarations of the column. Otherwise, any parents that specify default values for the column must all specify the same default, or an error will be reported.
CHECK
constraints are merged in essentially the same way as
columns: if multiple parent tables and/or the new table definition
contain identically-named CHECK
constraints, these
constraints must all have the same check expression, or an error will be
reported. Constraints having the same name and expression will
be merged into one copy. A constraint marked NO INHERIT
in a
parent will not be considered. Notice that an unnamed CHECK
constraint in the new table will never be merged, since a unique name
will always be chosen for it.
Column STORAGE
settings are also copied from parent tables.
If a column in the parent table is an identity column, that property is not inherited. A column in the child table can be declared identity column if desired.
PARTITION BY { RANGE | LIST | HASH } ( { column_name
| ( expression
) } [ opclass
] [, ...] )
The optional PARTITION BY
clause specifies a strategy
of partitioning the table. The table thus created is called a
partitioned table. The parenthesized list of
columns or expressions forms the partition key
for the table. When using range or hash partitioning, the partition key
can include multiple columns or expressions (up to 32, but this limit can
be altered when building LightDB), but for
list partitioning, the partition key must consist of a single column or
expression.
Range and list partitioning require a btree operator class, while hash partitioning requires a hash operator class. If no operator class is specified explicitly, the default operator class of the appropriate type will be used; if no default operator class exists, an error will be raised. When hash partitioning is used, the operator class used must implement support function 2 (see Section 35.16.3 for details).
A partitioned table is divided into sub-tables (called partitions),
which are created using separate CREATE TABLE
commands.
The partitioned table is itself empty. A data row inserted into the
table is routed to a partition based on the value of columns or
expressions in the partition key. If no existing partition matches
the values in the new row, an error will be reported.
Partitioned tables do not support EXCLUDE
constraints;
however, you can define these constraints on individual partitions.
See Section 5.11 for more discussion on table partitioning.
PARTITION OF parent_table
{ FOR VALUES partition_bound_spec
| DEFAULT }
Creates the table as a partition of the specified
parent table. The table can be created either as a partition for specific
values using FOR VALUES
or as a default partition
using DEFAULT
. Any indexes, constraints and
user-defined row-level triggers that exist in the parent table are cloned
on the new partition.
The partition_bound_spec
must correspond to the partitioning method and partition key of the
parent table, and must not overlap with any existing partition of that
parent. The form with IN
is used for list partitioning,
the form with FROM
and TO
is used
for range partitioning, and the form with WITH
is used
for hash partitioning.
partition_bound_expr
is
any variable-free expression (subqueries, window functions, aggregate
functions, and set-returning functions are not allowed). Its data type
must match the data type of the corresponding partition key column.
The expression is evaluated once at table creation time, so it can
even contain volatile expressions such as
.
CURRENT_TIMESTAMP
When creating a list partition, NULL
can be
specified to signify that the partition allows the partition key
column to be null. However, there cannot be more than one such
list partition for a given parent table. NULL
cannot be specified for range partitions.
When creating a range partition, the lower bound specified with
FROM
is an inclusive bound, whereas the upper
bound specified with TO
is an exclusive bound.
That is, the values specified in the FROM
list
are valid values of the corresponding partition key columns for this
partition, whereas those in the TO
list are
not. Note that this statement must be understood according to the
rules of row-wise comparison (Section 9.24.5).
For example, given PARTITION BY RANGE (x,y)
, a partition
bound FROM (1, 2) TO (3, 4)
allows x=1
with any y>=2
,
x=2
with any non-null y
,
and x=3
with any y<4
.
The special values MINVALUE
and MAXVALUE
may be used when creating a range partition to indicate that there
is no lower or upper bound on the column's value. For example, a
partition defined using FROM (MINVALUE) TO (10)
allows
any values less than 10, and a partition defined using
FROM (10) TO (MAXVALUE)
allows any values greater than
or equal to 10.
When creating a range partition involving more than one column, it
can also make sense to use MAXVALUE
as part of the lower
bound, and MINVALUE
as part of the upper bound. For
example, a partition defined using
FROM (0, MAXVALUE) TO (10, MAXVALUE)
allows any rows
where the first partition key column is greater than 0 and less than
or equal to 10. Similarly, a partition defined using
FROM ('a', MINVALUE) TO ('b', MINVALUE)
allows any rows
where the first partition key column starts with "a".
Note that if MINVALUE
or MAXVALUE
is used for
one column of a partitioning bound, the same value must be used for all
subsequent columns. For example, (10, MINVALUE, 0)
is not
a valid bound; you should write (10, MINVALUE, MINVALUE)
.
Also note that some element types, such as timestamp
,
have a notion of "infinity", which is just another value that can
be stored. This is different from MINVALUE
and
MAXVALUE
, which are not real values that can be stored,
but rather they are ways of saying that the value is unbounded.
MAXVALUE
can be thought of as being greater than any
other value, including "infinity" and MINVALUE
as being
less than any other value, including "minus infinity". Thus the range
FROM ('infinity') TO (MAXVALUE)
is not an empty range; it
allows precisely one value to be stored — "infinity".
If DEFAULT
is specified, the table will be
created as the default partition of the parent table. This option
either be a list or range or hash partitioned table. A partition key value
not fitting into any other partition of the given parent will be
routed to the default partition. There can be only one default
partition for a given parent table.
When a table has an existing DEFAULT
partition and
a new partition is added to it, the default partition must
be scanned to verify that it does not contain any rows which properly
belong in the new partition. If the default partition contains a
large number of rows, this may be slow. The scan will be skipped if
the default partition is a foreign table or if it has a constraint which
proves that it cannot contain rows which should be placed in the new
partition.
When creating a hash partition, a modulus and remainder must be specified. The modulus must be a positive integer, and the remainder must be a non-negative integer less than the modulus. Typically, when initially setting up a hash-partitioned table, you should choose a modulus equal to the number of partitions and assign every table the same modulus and a different remainder (see examples, below). However, it is not required that every partition have the same modulus, only that every modulus which occurs among the partitions of a hash-partitioned table is a factor of the next larger modulus. This allows the number of partitions to be increased incrementally without needing to move all the data at once. For example, suppose you have a hash-partitioned table with 8 partitions, each of which has modulus 8, but find it necessary to increase the number of partitions to 16. You can detach one of the modulus-8 partitions, create two new modulus-16 partitions covering the same portion of the key space (one with a remainder equal to the remainder of the detached partition, and the other with a remainder equal to that value plus 8), and repopulate them with data. You can then repeat this -- perhaps at a later time -- for each modulus-8 partition until none remain. While this may still involve a large amount of data movement at each step, it is still better than having to create a whole new table and move all the data at once.
A partition must have the same column names and types as the partitioned
table to which it belongs. Modifications to the column names or types of
a partitioned table will automatically propagate to all partitions.
CHECK
constraints will be inherited automatically by
every partition, but an individual partition may specify additional
CHECK
constraints; additional constraints with the
same name and condition as in the parent will be merged with the parent
constraint. Defaults may be specified separately for each partition.
But note that a partition's default value is not applied when inserting
a tuple through a partitioned table.
Rows inserted into a partitioned table will be automatically routed to the correct partition. If no suitable partition exists, an error will occur.
Operations such as TRUNCATE which normally affect a table and all of its
inheritance children will cascade to all partitions, but may also be
performed on an individual partition. Note that dropping a partition
with DROP TABLE
requires taking an ACCESS
EXCLUSIVE
lock on the parent table.
LIKE source_table
[ like_option
... ]
The LIKE
clause specifies a table from which
the new table automatically copies all column names, their data types,
and their not-null constraints.
Unlike INHERITS
, the new table and original table
are completely decoupled after creation is complete. Changes to the
original table will not be applied to the new table, and it is not
possible to include data of the new table in scans of the original
table.
Also unlike INHERITS
, columns and
constraints copied by LIKE
are not merged with similarly
named columns and constraints.
If the same name is specified explicitly or in another
LIKE
clause, an error is signaled.
The optional like_option
clauses specify
which additional properties of the original table to copy. Specifying
INCLUDING
copies the property, specifying
EXCLUDING
omits the property.
EXCLUDING
is the default. If multiple specifications
are made for the same kind of object, the last one is used. The
available options are:
INCLUDING COMMENTS
Comments for the copied columns, constraints, and indexes will be copied. The default behavior is to exclude comments, resulting in the copied columns and constraints in the new table having no comments.
INCLUDING CONSTRAINTS
CHECK
constraints will be copied. No distinction
is made between column constraints and table constraints. Not-null
constraints are always copied to the new table.
INCLUDING DEFAULTS
Default expressions for the copied column definitions will be
copied. Otherwise, default expressions are not copied, resulting in
the copied columns in the new table having null defaults. Note that
copying defaults that call database-modification functions, such as
nextval
, may create a functional linkage
between the original and new tables.
INCLUDING GENERATED
Any generation expressions of copied column definitions will be copied. By default, new columns will be regular base columns.
INCLUDING IDENTITY
Any identity specifications of copied column definitions will be copied. A new sequence is created for each identity column of the new table, separate from the sequences associated with the old table.
INCLUDING INDEXES
Indexes, PRIMARY KEY
, UNIQUE
,
and EXCLUDE
constraints on the original table
will be created on the new table. Names for the new indexes and
constraints are chosen according to the default rules, regardless of
how the originals were named. (This behavior avoids possible
duplicate-name failures for the new indexes.)
INCLUDING STATISTICS
Extended statistics are copied to the new table.
INCLUDING STORAGE
STORAGE
settings for the copied column
definitions will be copied. The default behavior is to exclude
STORAGE
settings, resulting in the copied columns
in the new table having type-specific default settings. For more on
STORAGE
settings, see Section 66.2.
INCLUDING SEQUENCES
Work with INCLUDING DEFAULTS
. When columns of
the old table are created using one of the serial types
(serial
, smallserial
, bigserial
),
a new sequence is created for each serial column of the new table,
separate from the sequences associated with the old table.
INCLUDING ALL
INCLUDING ALL
is an abbreviated form selecting
all the available individual options. (It could be useful to write
individual EXCLUDING
clauses after
INCLUDING ALL
to select all but some specific
options.)
The LIKE
clause can also be used to copy column
definitions from views, foreign tables, or composite types.
Inapplicable options (e.g., INCLUDING INDEXES
from
a view) are ignored.
CONSTRAINT constraint_name
An optional name for a column or table constraint. If the
constraint is violated, the constraint name is present in error messages,
so constraint names like col must be positive
can be used
to communicate helpful constraint information to client applications.
(Double-quotes are needed to specify constraint names that contain spaces.)
If a constraint name is not specified, the system generates a name.
NOT NULL
The column is not allowed to contain null values.
NULL
The column is allowed to contain null values. This is the default.
This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged in new applications.
CHECK ( expression
) [ NO INHERIT ]
The CHECK
clause specifies an expression producing a
Boolean result which new or updated rows must satisfy for an
insert or update operation to succeed. Expressions evaluating
to TRUE or UNKNOWN succeed. Should any row of an insert or
update operation produce a FALSE result, an error exception is
raised and the insert or update does not alter the database. A
check constraint specified as a column constraint should
reference that column's value only, while an expression
appearing in a table constraint can reference multiple columns.
Currently, CHECK
expressions cannot contain
subqueries nor refer to variables other than columns of the
current row (see Section 5.4.1).
The system column tableoid
may be referenced, but not any other system column.
A constraint marked with NO INHERIT
will not propagate to
child tables.
When a table has multiple CHECK
constraints,
they will be tested for each row in alphabetical order by name,
after checking NOT NULL
constraints.
(LightDB versions before 9.5 did not honor any
particular firing order for CHECK
constraints.)
DEFAULT
default_expr
The DEFAULT
clause assigns a default data value for
the column whose column definition it appears within. The value
is any variable-free expression (in particular, cross-references
to other columns in the current table are not allowed). Subqueries
are not allowed either. The data type of the default expression must
match the data type of the column.
The default expression will be used in any insert operation that does not specify a value for the column. If there is no default for a column, then the default is null.
ON UPDATE CURRENT_TIMESTAMP
TIMESTAMP ON UPDATZE CURRENT_TIMESTAMP columns can be automatically initializated and updated to the current timestamp. For any TIMESTAMP column in a table, you can assign the current timestamp as the default value, the ON UPDATE CURRENT_TIMESTAMP, or both. But not suggest use both default value and on update current_timestamp, because on update current_timestamp readys contains the default current_timestamp semantics.
ON UPDATE CURRENT_TIMESTAMP decorate only with TIMESTAMP type, other types are not allowed.
AUTO_INCREMENT
The clause creates the column as an auto increment column. The column cannot be written to. It will have an implicit sequence attached to it and the column in
new rows will automatically have value from the sequence assigned to it. Such a column is implicity NOT NULL
.
The clause is euqal to GENERATED ALWAYS AS IDENTITY.
GENERATED ALWAYS AS ( generation_expr
) STORED
This clause creates the column as a generated column. The column cannot be written to, and when read the result of the specified expression will be returned.
The keyword STORED
is required to signify that the
column will be computed on write and will be stored on disk.
The generation expression can refer to other columns in the table, but not other generated columns. Any functions and operators used must be immutable. References to other tables are not allowed.
GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( sequence_options
) ]
This clause creates the column as an identity
column. It will have an implicit sequence attached to it
and the column in new rows will automatically have values from the
sequence assigned to it.
Such a column is implicitly NOT NULL
.
The clauses ALWAYS
and BY DEFAULT
determine how explicitly user-specified values are handled in
INSERT
and UPDATE
commands.
In an INSERT
command, if ALWAYS
is
selected, a user-specified value is only accepted if the
INSERT
statement specifies OVERRIDING SYSTEM
VALUE
. If BY DEFAULT
is selected, then the
user-specified value takes precedence. See INSERT
for details. (In the COPY
command, user-specified
values are always used regardless of this setting.)
In an UPDATE
command, if ALWAYS
is
selected, any update of the column to any value other than
DEFAULT
will be rejected. If BY
DEFAULT
is selected, the column can be updated normally.
(There is no OVERRIDING
clause for the
UPDATE
command.)
The optional sequence_options
clause can be
used to override the options of the sequence.
See CREATE SEQUENCE for details.
UNIQUE
(column constraint)UNIQUE ( column_name
[, ... ] )
[ INCLUDE ( column_name
[, ...])
] (table constraint)
The UNIQUE
constraint specifies that a
group of one or more columns of a table can contain
only unique values. The behavior of a unique table constraint
is the same as that of a unique column constraint, with the
additional capability to span multiple columns. The constraint
therefore enforces that any two rows must differ in at least one
of these columns.
For the purpose of a unique constraint, null values are not considered equal.
Each unique constraint should name a set of columns that is different from the set of columns named by any other unique or primary key constraint defined for the table. (Otherwise, redundant unique constraints will be discarded.)
When establishing a unique constraint for a multi-level partition hierarchy, all the columns in the partition key of the target partitioned table, as well as those of all its descendant partitioned tables, must be included in the constraint definition.
Adding a unique constraint will automatically create a unique btree index on the column or group of columns used in the constraint.
The optional INCLUDE
clause adds to that index
one or more columns that are simply “payload”: uniqueness
is not enforced on them, and the index cannot be searched on the basis
of those columns. However they can be retrieved by an index-only scan.
Note that although the constraint is not enforced on included columns,
it still depends on them. Consequently, some operations on such columns
(e.g., DROP COLUMN
) can cause cascaded constraint and
index deletion.
PRIMARY KEY
(column constraint)PRIMARY KEY ( column_name
[, ... ] )
[ INCLUDE ( column_name
[, ...])
] (table constraint)
The PRIMARY KEY
constraint specifies that a column or
columns of a table can contain only unique (non-duplicate), nonnull
values. Only one primary key can be specified for a table, whether as a
column constraint or a table constraint.
The primary key constraint should name a set of columns that is different from the set of columns named by any unique constraint defined for the same table. (Otherwise, the unique constraint is redundant and will be discarded.)
PRIMARY KEY
enforces the same data constraints as
a combination of UNIQUE
and NOT
NULL
. However,
identifying a set of columns as the primary key also provides metadata
about the design of the schema, since a primary key implies that other
tables can rely on this set of columns as a unique identifier for rows.
When placed on a partitioned table, PRIMARY KEY
constraints share the restrictions previously described
for UNIQUE
constraints.
Adding a PRIMARY KEY
constraint will automatically
create a unique btree index on the column or group of columns used in the
constraint.
The optional INCLUDE
clause adds to that index
one or more columns that are simply “payload”: uniqueness
is not enforced on them, and the index cannot be searched on the basis
of those columns. However they can be retrieved by an index-only scan.
Note that although the constraint is not enforced on included columns,
it still depends on them. Consequently, some operations on such columns
(e.g., DROP COLUMN
) can cause cascaded constraint and
index deletion.
EXCLUDE [ USING index_method
] ( exclude_element
WITH operator
[, ... ] ) index_parameters
[ WHERE ( predicate
) ]
The EXCLUDE
clause defines an exclusion
constraint, which guarantees that if
any two rows are compared on the specified column(s) or
expression(s) using the specified operator(s), not all of these
comparisons will return TRUE
. If all of the
specified operators test for equality, this is equivalent to a
UNIQUE
constraint, although an ordinary unique constraint
will be faster. However, exclusion constraints can specify
constraints that are more general than simple equality.
For example, you can specify a constraint that
no two rows in the table contain overlapping circles
(see Section 8.8) by using the
&&
operator.
Exclusion constraints are implemented using
an index, so each specified operator must be associated with an
appropriate operator class
(see Section 11.10) for the index access
method index_method
.
The operators are required to be commutative.
Each exclude_element
can optionally specify an operator class and/or ordering options;
these are described fully under
CREATE INDEX.
The access method must support amgettuple
(see Chapter 59); at present this means GIN
cannot be used. Although it's allowed, there is little point in using
B-tree or hash indexes with an exclusion constraint, because this
does nothing that an ordinary unique constraint doesn't do better.
So in practice the access method will always be GiST or
SP-GiST.
The predicate
allows you to specify an
exclusion constraint on a subset of the table; internally this creates a
partial index. Note that parentheses are required around the predicate.
REFERENCES reftable
[ ( refcolumn
) ] [ MATCH matchtype
] [ ON DELETE referential_action
] [ ON UPDATE referential_action
]
(column constraint)FOREIGN KEY ( column_name
[, ... ] )
REFERENCES reftable
[ ( refcolumn
[, ... ] ) ]
[ MATCH matchtype
]
[ ON DELETE referential_action
]
[ ON UPDATE referential_action
]
(table constraint)
These clauses specify a foreign key constraint, which requires
that a group of one or more columns of the new table must only
contain values that match values in the referenced
column(s) of some row of the referenced table. If the refcolumn
list is omitted, the
primary key of the reftable
is used. The referenced columns must be the columns of a non-deferrable
unique or primary key constraint in the referenced table. The user
must have REFERENCES
permission on the referenced table
(either the whole table, or the specific referenced columns). The
addition of a foreign key constraint requires a
SHARE ROW EXCLUSIVE
lock on the referenced table.
Note that foreign key constraints cannot be defined between temporary
tables and permanent tables.
A value inserted into the referencing column(s) is matched against the
values of the referenced table and referenced columns using the
given match type. There are three match types: MATCH
FULL
, MATCH PARTIAL
, and MATCH
SIMPLE
(which is the default). MATCH
FULL
will not allow one column of a multicolumn foreign key
to be null unless all foreign key columns are null; if they are all
null, the row is not required to have a match in the referenced table.
MATCH SIMPLE
allows any of the foreign key columns
to be null; if any of them are null, the row is not required to have a
match in the referenced table.
MATCH PARTIAL
is not yet implemented.
(Of course, NOT NULL
constraints can be applied to the
referencing column(s) to prevent these cases from arising.)
In addition, when the data in the referenced columns is changed,
certain actions are performed on the data in this table's
columns. The ON DELETE
clause specifies the
action to perform when a referenced row in the referenced table is
being deleted. Likewise, the ON UPDATE
clause specifies the action to perform when a referenced column
in the referenced table is being updated to a new value. If the
row is updated, but the referenced column is not actually
changed, no action is done. Referential actions other than the
NO ACTION
check cannot be deferred, even if
the constraint is declared deferrable. There are the following possible
actions for each clause:
NO ACTION
Produce an error indicating that the deletion or update would create a foreign key constraint violation. If the constraint is deferred, this error will be produced at constraint check time if there still exist any referencing rows. This is the default action.
RESTRICT
Produce an error indicating that the deletion or update
would create a foreign key constraint violation.
This is the same as NO ACTION
except that
the check is not deferrable.
CASCADE
Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new values of the referenced columns, respectively.
SET NULL
Set the referencing column(s) to null.
SET DEFAULT
Set the referencing column(s) to their default values. (There must be a row in the referenced table matching the default values, if they are not null, or the operation will fail.)
If the referenced column(s) are changed frequently, it might be wise to add an index to the referencing column(s) so that referential actions associated with the foreign key constraint can be performed more efficiently.
DEFERRABLE
NOT DEFERRABLE
This controls whether the constraint can be deferred. A
constraint that is not deferrable will be checked immediately
after every command. Checking of constraints that are
deferrable can be postponed until the end of the transaction
(using the SET CONSTRAINTS command).
NOT DEFERRABLE
is the default.
Currently, only UNIQUE
, PRIMARY KEY
,
EXCLUDE
, and
REFERENCES
(foreign key) constraints accept this
clause. NOT NULL
and CHECK
constraints are not
deferrable. Note that deferrable constraints cannot be used as
conflict arbitrators in an INSERT
statement that
includes an ON CONFLICT DO UPDATE
clause.
INITIALLY IMMEDIATE
INITIALLY DEFERRED
If a constraint is deferrable, this clause specifies the default
time to check the constraint. If the constraint is
INITIALLY IMMEDIATE
, it is checked after each
statement. This is the default. If the constraint is
INITIALLY DEFERRED
, it is checked only at the
end of the transaction. The constraint check time can be
altered with the SET CONSTRAINTS command.
USING method
This optional clause specifies the table access method to use to store
the contents for the new table; the method needs be an access method of
type TABLE
. See Chapter 58 for more
information. If this option is not specified, the default table access
method is chosen for the new table. See default_table_access_method for more information.
WITH UPDATE CURRENT_TIMESTAMP
This clause specifies optional implicate "ltaut" column for a table.
ltaut column can be automatically initializated and updated to the current timestamp like
TIMESTAMP ON UPDATZE CURRENT_TIMESTAMP
columns. Can be automatically initializated and updated to the current timestamp.
If you use WITH UPDATE CURRENT_TIMESTAMP
, ON UPDATE CURRENT_TIMESTAMP
is not allowed, vice versa.
WITH PRIMARY KEY [ smallserial | serial | bigserial ]
This clause specifies optional implicate "ltapk" column for a table.
"ltapk" column can be automatically incremented and be specified the primary key constrain.
If tables already have a primary key, WITH PRIMARY KEY
is not allowed.
When creating a table via CREATE TABLE,
CREATE TABLE AS or SELECT INTO,
"ltapk" is not allowed to be an explicit column name of the new table.
(unless INDEXES
and DEFAULTS
are
included in like_option
when used in
CREATE TABLE)
WITH ( storage_parameter
[= value
] [, ... ] )
This clause specifies optional storage parameters for a table or index;
see Storage Parameters below for more
information. For backward-compatibility the WITH
clause for a table can also include OIDS=FALSE
to
specify that rows of the new table should not contain OIDs (object
identifiers), OIDS=TRUE
is not supported anymore.
WITHOUT OIDS
This is backward-compatible syntax for declaring a table
WITHOUT OIDS
, creating a table WITH
OIDS
is not supported anymore.
ON COMMIT
The behavior of temporary tables at the end of a transaction
block can be controlled using ON COMMIT
.
The three options are:
PRESERVE ROWS
No special action is taken at the ends of transactions. This is the default behavior.
DELETE ROWS
All rows in the temporary table will be deleted at the end of each transaction block. Essentially, an automatic TRUNCATE is done at each commit. When used on a partitioned table, this is not cascaded to its partitions.
DROP
The temporary table will be dropped at the end of the current transaction block. When used on a partitioned table, this action drops its partitions and when used on tables with inheritance children, it drops the dependent children.
TABLESPACE tablespace_name
The tablespace_name
is the name
of the tablespace in which the new table is to be created.
If not specified,
default_tablespace is consulted, or
temp_tablespaces if the table is temporary. For
partitioned tables, since no storage is required for the table itself,
the tablespace specified overrides default_tablespace
as the default tablespace to use for any newly created partitions when no
other tablespace is explicitly specified.
USING INDEX TABLESPACE tablespace_name
This clause allows selection of the tablespace in which the index
associated with a UNIQUE
, PRIMARY
KEY
, or EXCLUDE
constraint will be created.
If not specified,
default_tablespace is consulted, or
temp_tablespaces if the table is temporary.
The WITH
clause can specify storage parameters
for tables, and for indexes associated with a UNIQUE
,
PRIMARY KEY
, or EXCLUDE
constraint.
Storage parameters for
indexes are documented in CREATE INDEX.
The storage parameters currently
available for tables are listed below. For many of these parameters, as
shown, there is an additional parameter with the same name prefixed with
toast.
, which controls the behavior of the
table's secondary TOAST table, if any
(see Section 66.2 for more information about TOAST).
If a table parameter value is set and the
equivalent toast.
parameter is not, the TOAST table
will use the table's parameter value.
Specifying these parameters for partitioned tables is not supported,
but you may specify them for individual leaf partitions.
fillfactor
(integer
)
The fillfactor for a table is a percentage between 10 and 100.
100 (complete packing) is the default. When a smaller fillfactor
is specified, INSERT
operations pack table pages only
to the indicated percentage; the remaining space on each page is
reserved for updating rows on that page. This gives UPDATE
a chance to place the updated copy of a row on the same page as the
original, which is more efficient than placing it on a different page.
For a table whose entries are never updated, complete packing is the
best choice, but in heavily updated tables smaller fillfactors are
appropriate. This parameter cannot be set for TOAST tables.
toast_tuple_target
(integer
)
The toast_tuple_target specifies the minimum tuple length required before we try to compress and/or move long column values into TOAST tables, and is also the target length we try to reduce the length below once toasting begins. This affects columns marked as External (for move), Main (for compression), or Extended (for both) and applies only to new tuples. There is no effect on existing rows. By default this parameter is set to allow at least 4 tuples per block, which with the default block size will be 2040 bytes. Valid values are between 128 bytes and the (block size - header), by default 8160 bytes. Changing this value may not be useful for very short or very long rows. Note that the default setting is often close to optimal, and it is possible that setting this parameter could have negative effects in some cases. This parameter cannot be set for TOAST tables.
parallel_workers
(integer
)
This sets the number of workers that should be used to assist a parallel scan of this table. If not set, the system will determine a value based on the relation size. The actual number of workers chosen by the planner or by utility statements that use parallel scans may be less, for example due to the setting of max_worker_processes.
autovacuum_enabled
, toast.autovacuum_enabled
(boolean
)
Enables or disables the autovacuum daemon for a particular table.
If true, the autovacuum daemon will perform automatic VACUUM
and/or ANALYZE
operations on this table following the rules
discussed in Section 22.1.6.
If false, this table will not be autovacuumed, except to prevent
transaction ID wraparound. See Section 22.1.5 for
more about wraparound prevention.
Note that the autovacuum daemon does not run at all (except to prevent
transaction ID wraparound) if the autovacuum
parameter is false; setting individual tables' storage parameters does
not override that. Therefore there is seldom much point in explicitly
setting this storage parameter to true
, only
to false
.
vacuum_index_cleanup
, toast.vacuum_index_cleanup
(boolean
)
Enables or disables index cleanup when VACUUM
is
run on this table. The default value is true
.
Disabling index cleanup can speed up VACUUM
very
significantly, but may also lead to severely bloated indexes if table
modifications are frequent. The INDEX_CLEANUP
parameter of VACUUM, if specified, overrides
the value of this option.
vacuum_truncate
, toast.vacuum_truncate
(boolean
)
Enables or disables vacuum to try to truncate off any empty pages
at the end of this table. The default value is true
.
If true
, VACUUM
and
autovacuum do the truncation and the disk space for
the truncated pages is returned to the operating system.
Note that the truncation requires ACCESS EXCLUSIVE
lock on the table. The TRUNCATE
parameter
of VACUUM, if specified, overrides the value
of this option.
autovacuum_vacuum_threshold
, toast.autovacuum_vacuum_threshold
(integer
)
Per-table value for autovacuum_vacuum_threshold parameter.
autovacuum_vacuum_scale_factor
, toast.autovacuum_vacuum_scale_factor
(floating point
)
Per-table value for autovacuum_vacuum_scale_factor parameter.
autovacuum_vacuum_insert_threshold
, toast.autovacuum_vacuum_insert_threshold
(integer
)
Per-table value for autovacuum_vacuum_insert_threshold parameter. The special value of -1 may be used to disable insert vacuums on the table.
autovacuum_vacuum_insert_scale_factor
, toast.autovacuum_vacuum_insert_scale_factor
(float4
)
Per-table value for autovacuum_vacuum_insert_scale_factor parameter.
autovacuum_analyze_threshold
(integer
)
Per-table value for autovacuum_analyze_threshold parameter.
autovacuum_analyze_scale_factor
(floating point
)
Per-table value for autovacuum_analyze_scale_factor parameter.
autovacuum_vacuum_cost_delay
, toast.autovacuum_vacuum_cost_delay
(floating point
)
Per-table value for autovacuum_vacuum_cost_delay parameter.
autovacuum_vacuum_cost_limit
, toast.autovacuum_vacuum_cost_limit
(integer
)
Per-table value for autovacuum_vacuum_cost_limit parameter.
autovacuum_freeze_min_age
, toast.autovacuum_freeze_min_age
(integer
)
Per-table value for vacuum_freeze_min_age
parameter. Note that autovacuum will ignore
per-table autovacuum_freeze_min_age
parameters that are
larger than half the
system-wide autovacuum_freeze_max_age setting.
autovacuum_freeze_max_age
, toast.autovacuum_freeze_max_age
(integer
)
Per-table value for autovacuum_freeze_max_age
parameter. Note that autovacuum will ignore
per-table autovacuum_freeze_max_age
parameters that are
larger than the system-wide setting (it can only be set smaller).
autovacuum_freeze_table_age
, toast.autovacuum_freeze_table_age
(integer
)
Per-table value for vacuum_freeze_table_age parameter.
autovacuum_multixact_freeze_min_age
, toast.autovacuum_multixact_freeze_min_age
(integer
)
Per-table value for vacuum_multixact_freeze_min_age
parameter. Note that autovacuum will ignore
per-table autovacuum_multixact_freeze_min_age
parameters
that are larger than half the
system-wide autovacuum_multixact_freeze_max_age
setting.
autovacuum_multixact_freeze_max_age
, toast.autovacuum_multixact_freeze_max_age
(integer
)
Per-table value
for autovacuum_multixact_freeze_max_age parameter.
Note that autovacuum will ignore
per-table autovacuum_multixact_freeze_max_age
parameters
that are larger than the system-wide setting (it can only be set
smaller).
autovacuum_multixact_freeze_table_age
, toast.autovacuum_multixact_freeze_table_age
(integer
)
Per-table value for vacuum_multixact_freeze_table_age parameter.
log_autovacuum_min_duration
, toast.log_autovacuum_min_duration
(integer
)
Per-table value for log_autovacuum_min_duration parameter.
user_catalog_table
(boolean
)
Declare the table as an additional catalog table for purposes of logical replication. See Section 46.6.2 for details. This parameter cannot be set for TOAST tables.
LightDB automatically creates an index for each unique constraint and primary key constraint to enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns. (See CREATE INDEX for more information.)
Unique constraints and primary keys are not inherited in the current implementation. This makes the combination of inheritance and unique constraints rather dysfunctional.
A table cannot have more than 1600 columns. (In practice, the effective limit is usually lower because of tuple-length constraints.)
Create table films
and table
distributors
:
CREATE TABLE films ( code char(5) CONSTRAINT firstkey PRIMARY KEY, title varchar(40) NOT NULL, did integer NOT NULL, date_prod date, kind varchar(10), len interval hour to minute ); CREATE TABLE distributors ( did integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY, name varchar(40) NOT NULL CHECK (name <> '') );
Create a table with a 2-dimensional array:
CREATE TABLE array_int ( vector int[][] );
Define a unique table constraint for the table
films
. Unique table constraints can be defined
on one or more columns of the table:
CREATE TABLE films ( code char(5), title varchar(40), did integer, date_prod date, kind varchar(10), len interval hour to minute, CONSTRAINT production UNIQUE(date_prod) );
Define a check column constraint:
CREATE TABLE distributors ( did integer CHECK (did > 100), name varchar(40) );
Define a check table constraint:
CREATE TABLE distributors ( did integer, name varchar(40), CONSTRAINT con1 CHECK (did > 100 AND name <> '') );
Define a primary key table constraint for the table
films
:
CREATE TABLE films ( code char(5), title varchar(40), did integer, date_prod date, kind varchar(10), len interval hour to minute, CONSTRAINT code_title PRIMARY KEY(code,title) );
Define a primary key constraint for table
distributors
. The following two examples are
equivalent, the first using the table constraint syntax, the second
the column constraint syntax:
CREATE TABLE distributors ( did integer, name varchar(40), PRIMARY KEY(did) ); CREATE TABLE distributors ( did integer PRIMARY KEY, name varchar(40) );
Assign a literal constant default value for the column
name
, arrange for the default value of column
did
to be generated by selecting the next value
of a sequence object, and make the default value of
modtime
be the time at which the row is
inserted:
CREATE TABLE distributors ( name varchar(40) DEFAULT 'Luso Films', did integer DEFAULT nextval('distributors_serial'), modtime timestamp DEFAULT current_timestamp );
Define two NOT NULL
column constraints on the table
distributors
, one of which is explicitly
given a name:
CREATE TABLE distributors ( did integer CONSTRAINT no_null NOT NULL, name varchar(40) NOT NULL );
Define ON UPDATE CURRENT_TIMESTAMP
column on the table
distributors
, one of which is explicitly
given a name:
CREATE TABLE distributors ( did int, modtime timestamp ON UPDATE CURRENT_TIMESTAMP );
Create table distributors WITH UPDATE CURRENT_TIMESTAMP
.
CREATE TABLE distributors ( did int, ) WITH UPDATE CURRENT_TIMESTAMP;
Define AUTO_INCREMENT
column constraints on the table
distributors
, one of which is explicitly
given a name:
CREATE TABLE distributors ( did int AUTO_INCREMENT, name varchar(40) NOT NULL );
Define a unique constraint for the name
column:
CREATE TABLE distributors ( did integer, name varchar(40) UNIQUE );
The same, specified as a table constraint:
CREATE TABLE distributors ( did integer, name varchar(40), UNIQUE(name) );
Create the same table, specifying 70% fill factor for both the table and its unique index:
CREATE TABLE distributors ( did integer, name varchar(40), UNIQUE(name) WITH (fillfactor=70) ) WITH (fillfactor=70);
Create table circles
with an exclusion
constraint that prevents any two circles from overlapping:
CREATE TABLE circles ( c circle, EXCLUDE USING gist (c WITH &&) );
Create table cinemas
in tablespace diskvol1
:
CREATE TABLE cinemas ( id serial, name text, location text ) TABLESPACE diskvol1;
Create a composite type and a typed table:
CREATE TYPE employee_type AS (name text, salary numeric); CREATE TABLE employees OF employee_type ( PRIMARY KEY (name), salary WITH OPTIONS DEFAULT 1000 );
Create a range partitioned table:
CREATE TABLE measurement ( logdate date not null, peaktemp int, unitsales int ) PARTITION BY RANGE (logdate);
Create a range partitioned table with multiple columns in the partition key:
CREATE TABLE measurement_year_month ( logdate date not null, peaktemp int, unitsales int ) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM logdate));
Create a list partitioned table:
CREATE TABLE cities ( city_id bigserial not null, name text not null, population bigint ) PARTITION BY LIST (left(lower(name), 1));
Create a hash partitioned table:
CREATE TABLE orders ( order_id bigint not null, cust_id bigint not null, status text ) PARTITION BY HASH (order_id);
Create partition of a range partitioned table:
CREATE TABLE measurement_y2016m07 PARTITION OF measurement ( unitsales DEFAULT 0 ) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');
Create a few partitions of a range partitioned table with multiple columns in the partition key:
CREATE TABLE measurement_ym_older PARTITION OF measurement_year_month FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11); CREATE TABLE measurement_ym_y2016m11 PARTITION OF measurement_year_month FOR VALUES FROM (2016, 11) TO (2016, 12); CREATE TABLE measurement_ym_y2016m12 PARTITION OF measurement_year_month FOR VALUES FROM (2016, 12) TO (2017, 01); CREATE TABLE measurement_ym_y2017m01 PARTITION OF measurement_year_month FOR VALUES FROM (2017, 01) TO (2017, 02);
Create partition of a list partitioned table:
CREATE TABLE cities_ab PARTITION OF cities ( CONSTRAINT city_id_nonzero CHECK (city_id != 0) ) FOR VALUES IN ('a', 'b');
Create partition of a list partitioned table that is itself further partitioned and then add a partition to it:
CREATE TABLE cities_ab PARTITION OF cities ( CONSTRAINT city_id_nonzero CHECK (city_id != 0) ) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population); CREATE TABLE cities_ab_10000_to_100000 PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);
Create partitions of a hash partitioned table:
CREATE TABLE orders_p1 PARTITION OF orders FOR VALUES WITH (MODULUS 4, REMAINDER 0); CREATE TABLE orders_p2 PARTITION OF orders FOR VALUES WITH (MODULUS 4, REMAINDER 1); CREATE TABLE orders_p3 PARTITION OF orders FOR VALUES WITH (MODULUS 4, REMAINDER 2); CREATE TABLE orders_p4 PARTITION OF orders FOR VALUES WITH (MODULUS 4, REMAINDER 3);
Create a default partition:
CREATE TABLE cities_partdef PARTITION OF cities DEFAULT;
Create range partitioned tables:
CREATE TABLE sales ( id int, date date ) PARTITION BY RANGE (date) ( START (date '2020-01-01') INCLUSIVE END (date '2021-01-01') EXCLUSIVE EVERY (INTERVAL '1 day') );
Create list partitioned tables:
CREATE TABLE rank ( id int, gender char(1) ) PARTITION BY LIST (gender) ( PARTITION girls VALUES ('F'), PARTITION boys VALUES ('M'), DEFAULT PARTITION other );
Create hash partitioned tables:
CREATE TABLE thash ( a int, b int, c text ) PARTITION BY HASH(a,b) ( PARTITION p1 VALUES WITH (MODULUS 3, REMAINDER 0), PARTITION p2 VALUES WITH (MODULUS 3, REMAINDER 1), PARTITION p3 VALUES WITH (MODULUS 3, REMAINDER 2) );
Create sub-partition:
CREATE TABLE sub_partition_list (a text) PARTITION BY LIST(a) (PARTITION p1 VALUES ('1','2','3')); CREATE TABLE sub_partition_range (a int) PARTITION BY RANGE(a) (PARTITION p1 FROM (0) TO (10)); CREATE TABLE sub_partition_range2 (a int) PARTITION BY RANGE(a) (PARTITION p1 START (0) END (10)); CREATE TABLE sub_partition_hash (a int) PARTITION BY HASH(a) ( PARTITION p1 VALUES WITH (MODULUS 3, REMAINDER 0), PARTITION p2 VALUES WITH (MODULUS 3, REMAINDER 1), PARTITION p3 VALUES WITH (MODULUS 3, REMAINDER 2) ); CREATE TABLE sub_partition_sp ( a int, b int, c text ) PARTITION BY RANGE(a) SUBPARTITION BY LIST (c) SUBPARTITION TEMPLATE ( VALUES ('0000', '0001', '0002'), VALUES ('0003') ) ( PARTITION p1 FROM (0) TO (12), PARTITION p2 FROM (12) TO (20) );
The CREATE TABLE
command conforms to the
SQL standard, with exceptions listed below.
Although the syntax of CREATE TEMPORARY TABLE
resembles that of the SQL standard, the effect is not the same. In the
standard,
temporary tables are defined just once and automatically exist (starting
with empty contents) in every session that needs them.
LightDB instead
requires each session to issue its own CREATE TEMPORARY
TABLE
command for each temporary table to be used. This allows
different sessions to use the same temporary table name for different
purposes, whereas the standard's approach constrains all instances of a
given temporary table name to have the same table structure.
The standard's definition of the behavior of temporary tables is widely ignored. LightDB's behavior on this point is similar to that of several other SQL databases.
The SQL standard also distinguishes between global and local temporary tables, where a local temporary table has a separate set of contents for each SQL module within each session, though its definition is still shared across sessions. Since LightDB does not support SQL modules, this distinction is not relevant in LightDB.
For compatibility's sake, LightDB will
accept the GLOBAL
and LOCAL
keywords
in a temporary table declaration, but they currently have no effect.
Use of these keywords is discouraged, since future versions of
LightDB might adopt a more
standard-compliant interpretation of their meaning.
The ON COMMIT
clause for temporary tables
also resembles the SQL standard, but has some differences.
If the ON COMMIT
clause is omitted, SQL specifies that the
default behavior is ON COMMIT DELETE ROWS
. However, the
default behavior in LightDB is
ON COMMIT PRESERVE ROWS
. The ON COMMIT
DROP
option does not exist in SQL.
When a UNIQUE
or PRIMARY KEY
constraint is
not deferrable, LightDB checks for
uniqueness immediately whenever a row is inserted or modified.
The SQL standard says that uniqueness should be enforced only at
the end of the statement; this makes a difference when, for example,
a single command updates multiple key values. To obtain
standard-compliant behavior, declare the constraint as
DEFERRABLE
but not deferred (i.e., INITIALLY
IMMEDIATE
). Be aware that this can be significantly slower than
immediate uniqueness checking.
The SQL standard says that CHECK
column constraints
can only refer to the column they apply to; only CHECK
table constraints can refer to multiple columns.
LightDB does not enforce this
restriction; it treats column and table check constraints alike.
EXCLUDE
Constraint
The EXCLUDE
constraint type is a
LightDB extension.
NULL
“Constraint”
The NULL
“constraint” (actually a
non-constraint) is a LightDB
extension to the SQL standard that is included for compatibility with some
other database systems (and for symmetry with the NOT
NULL
constraint). Since it is the default for any
column, its presence is simply noise.
The SQL standard says that table and domain constraints must have names
that are unique across the schema containing the table or domain.
LightDB is laxer: it only requires
constraint names to be unique across the constraints attached to a
particular table or domain. However, this extra freedom does not exist
for index-based constraints (UNIQUE
,
PRIMARY KEY
, and EXCLUDE
constraints), because the associated index is named the same as the
constraint, and index names must be unique across all relations within
the same schema.
Currently, LightDB does not record names
for NOT NULL
constraints at all, so they are not
subject to the uniqueness restriction. This might change in a future
release.
Multiple inheritance via the INHERITS
clause is
a LightDB language extension.
SQL:1999 and later define single inheritance using a
different syntax and different semantics. SQL:1999-style
inheritance is not yet supported by
LightDB.
LightDB allows a table of no columns
to be created (for example, CREATE TABLE foo();
). This
is an extension from the SQL standard, which does not allow zero-column
tables. Zero-column tables are not in themselves very useful, but
disallowing them creates odd special cases for ALTER TABLE
DROP COLUMN
, so it seems cleaner to ignore this spec restriction.
LightDB allows a table to have more than one
identity column. The standard specifies that a table can have at most one
identity column. This is relaxed mainly to give more flexibility for
doing schema changes or migrations. Note that
the INSERT
command supports only one override clause
that applies to the entire statement, so having multiple identity columns
with different behaviors is not well supported.
The option STORED
is not standard but is also used by
other SQL implementations. The SQL standard does not specify the storage
of generated columns.
LIKE
Clause
While a LIKE
clause exists in the SQL standard, many of the
options that LightDB accepts for it are not
in the standard, and some of the standard's options are not implemented
by LightDB.
WITH
Clause
The WITH
clause is a LightDB
extension; storage parameters are not in the standard.
The LightDB concept of tablespaces is not
part of the standard. Hence, the clauses TABLESPACE
and USING INDEX TABLESPACE
are extensions.
Typed tables implement a subset of the SQL standard. According to the standard, a typed table has columns corresponding to the underlying composite type as well as one other column that is the “self-referencing column”. LightDB does not support self-referencing columns explicitly.
PARTITION BY
Clause
The PARTITION BY
clause is a
LightDB extension.
PARTITION OF
Clause
The PARTITION OF
clause is a
LightDB extension.